

AFFIMET REGEAL - COMPIEGNES RAPPORT D'ESSAI

CONTRÔLE RÉGLEMENTAIRE DES REJETS DE POLLUANTS À L'ATMOSPHÈRE

RTF3

Date Intervention: 11/12/2020

INTERVENANTS A.COURTOIS - P. KACZMAREK -

Agence de Lens

CLIENT : AFFIMET REGEAL

Avenue du Vermandois 60200 COMPIEGNES

N° de DOSSIER MAITRE : 8200083

REDACTEUR : PM. DUHAMEL

DESTINATAIRES : MME BLONDELLE NATHALIE (1 copie)

Suivi des versions de rapport						
Version	Synthèse des modifications et le cas échéant explications	Chapitre(s), tableau(x) modifié(s)				
1	Version initiale	/				

L'accréditation par le Cofrac atteste de la compétence du laboratoire pour les seul(e)s analyses et essais couvert(e)s par l'accréditation, identifié(e)s dans le tableau n°1, dans le chapitre « Synthèse des résultats »

Le rapport d'essai ne concerne que les objets soumis à essais. La reproduction de ce rapport d'essai n'est autorisée que sous la forme de fac-similés photographiques intégraux annexes comprises

	Vérificateur	Approbateur
Nom	P. KACZMAREK	PM.DUHAMEL
Fonction	Responsable d'agence	Responsable d'affaire
Signature	Thougast	1-5

SOMMAIRE

1	OBJET DES MESURES	4
2	EXPRESSION DES RESULTATS	4
3	SYNTHESE DES RESULTATS	5
4	DESCRIPTION DE L'INSTALLATION	
5	HOMOGENEITE DE LA SECTION DE MESURE (COMPOSES GAZEUX)	
6	CARACTERISTIQUES AERAULIQUES	
7	POUSSIERES DANS LES FUMEES	
8	METAUX LOURDS	
9	DIOXYDE DE SOUFRE	
10	ACIDE CHLORHYDRIQUE	
11	ACIDE FLUORHYDRIQUE	
12	ALDEHYDES	
13	PHENOL	
14	BENZENE	24
15	PCDD/PCDF	25
16	GAZ DANS LES FUMEES	28
17	MATERIEL MIS EN OEUVRE	32
18	INCERTITUDES DE MESURES	33
19	PARAMETRES MESURES	
	TABLEAUX	
	LEAU 1. CONFORMITE VIS-A-VIS DES NORMES	
	LEAU 2. CONFORMITE DES BLANCS LEAU 3. SYNTHESE DES RESULTATS OBTENUS	
	LEAU 4. DESCRIPTION DE L'INSTALLATION	
TABL	LEAU 5. ETUDE DE L'HOMOGENEITE	10
	LEAU 6. CARTE DE VITESSES ET CARACTERISTIQUES AERAULIQUES	
	LEAU 7. CONFORMITE DE LA SECTION DE PRELEVEMENT LEAU 8. CONCENTRATIONS EN POUSSIERES	
	LEAU 9. MESURES DE LA CONCENTRATION EN METAUX LOURDS	
	LEAU 10. MESURES DE LA CONCENTRATION EN DIOXYDE DE SOUFRE	
	LEAU 11. MESURES DE LA CONCENTRATION EN ACIDE CHLORHYDRIQUE	
	LEAU 12. MESURES DE LA CONCENTRATION EN ACIDE FLUORHYDRIQUE LEAU 13. MESURES EN ALDEHYDES	
	LEAU 13. MESURES EN ALDENTDES LEAU 14. MESURES EN PHENOL	
	LEAU 15. MESURES EN BENZENE	
TABL	_EAU 16. MESURES DE PCDD/F	25
	LEAU 17. RESULTATS DES PRELEVEMENTS DES POLLUANTS GAZEUX	
	LEAU 18. LISTE DU MATERIEL UTILISE LEAU 19. INCERTITUDES DE MESURES	
	LEAU 19. INCERTITUDES DE MESURES LEAU 20. LIMITE DE QUANTIFICATION DANS LES CONDITIONS D'INTERVENTION	
	LEAU 21. PARAMETRES MESURES EN METHODE MANUELLE ET METHODOLOG	
RINC	AGE	34
TABL	EAU 22. PARAMETRES MESURES EN METHODE AUTOMATIQUE	34

ANNEXES

ANNEXE 1: REGLES DE CALCUL DES RESULTATS SELON LAB REF 22	36
---	----

RC 37648 Page 3/36

1 OBJET DES MESURES

1.1 CONTEXTE DES MESURES

Notre prestation correspond au contrôle des rejets atmosphériques de l'installation RTF3 du site AFFIMET REGEAL situé à COMPIEGNES, en tenant compte des prescriptions de l'arrêté d'exploitation et des textes en vigueur.

1.2 AGRÉMENTS

LECES est agréé par le ministère de l'écologie, du développement durable et de l'énergie par l'arrêté du 28 mai 2015 pour « effectuer certains types de prélèvements et d'analyses à l'émission des substance dans l'atmosphère » pour les agréments suivants :

- Agrément 1 a et 1 b : prélèvement (1 a) et quantification (1 b) des poussières dans une veine gazeuse.
- Agrément 2 : prélèvement et analyse des composés organiques volatils totaux.
- Agréments 3 a : prélèvement de mercure (Hg).
- Agréments 4 a : prélèvement d'acide chlorhydrique (HCI).
- Agréments 5 a: prélèvement (5 a) d'acide fluorhydrique (HF).
- Agréments 6 a: prélèvement (6 a) de métaux lourds autres que le mercure (arsenic, cadmium, chrome, cobalt, cuivre, manganèse, nickel, plomb, antimoine, thallium, vanadium).
- Agrément 7 : prélèvement de dioxines et furannes dans une veine gazeuse (PCDD et PCDF).
- Agréments 9 a: prélèvement (9 a) d'hydrocarbures aromatiques polycycliques (HAP).
- Agréments 10 a: prélèvement (10 a) du dioxyde de soufre (SO₂)
- Agrément 11 : prélèvement et analyse des oxydes d'azote (NOx).
- Agrément 12 : prélèvement et analyse du monoxyde de carbone (CO).
- Agrément 13 : prélèvement et analyse de l'oxygène (O₂).
- Agrément 14 : détermination de la vitesse et du débit-volume.
- Agrément 15 : prélèvement et détermination de la concentration en vapeur d'eau.
- Agrément 16 a: prélèvement (a) de l'ammoniac (NH₃).

2 EXPRESSION DES RÉSULTATS

Les mesures sont exprimées dans les conditions normales de température et de pression (273 K, 1,013.10Pa) sur gaz sec. L'unité utilisée est le normal mètre cube (m_0^3) .

L'expression des résultats respecte les préconisations du document Cofrac LAB REF 22. La durée des prélèvements et/ou la technique analytique doit permettre de répondre aux exigences réglementaires qui consistent à atteindre une limite de quantification (LQ) inférieure à 10 % de la valeur limite d'émission pour le polluant visé par la VLE (composé individuel ou somme de composés).

Les règles applicables pour l'expression des résultats et l'évaluation de la conformité de l'installation sont les suivantes : réaliser une somme des différentes phases (particulaire et/gazeuse) en considérant :

- la valeur 0 si le composé n'est pas détecté à l'analyse (C < LQ/3), le résultat présente une typographie en gras et italique.
- LQ/2 si la valeur donnée par l'analyse est comprise entre LQ/3 et LQ. le résultat présente une typographie en gras et italique.

Pour les teneurs d'essais inférieures aux teneurs des blancs, les valeurs retenues pour les concentrations sont les teneurs obtenus sur le support du blanc (blanc final en cas de réalisation de 2 blancs) divisé par les volumes de l'essai concerné. Ces concentrations modifiées sont reportées avec un signe « < », en typographie gras et couleur blanche sur fond ombré.

Les étapes conduisant au calcul des résultats sont précisées à l'annexe 1.

Le diagnostic de conformité au regard des VLEs est établi par simple comparaison des résultats obtenus (moyenne dans le cas de plusieurs essais) à la VLE sans prise en compte des incertitudes.

RC 37648 Page 4/36

Les résultats présentant dans le sein du rapport une distinction entre la phase particulaire et la phase gazeuse correspondent à une répartition à la température de filtration et non à la situation physique dans le conduit.

2.1 DONNEES FOURNIES PAR LE CLIENT

Les données suivantes sont fournies par le client :

La responsabilité du laboratoire ne peut être engagé lorsque les informations pouvant affecter la validité du laboratoire, sont fournies par le client.

3 SYNTHESE DES RÉSULTATS

3.1 NORMES APPLIQUEES ET ECARTS EVENTUELS

Tableau 1. Conformité vis-à-vis des normes

Toute non-conformité entraine l'impossibilité de préciser les incertitudes associées aux mesurages pour le paramètre concerné. Les non-conformités associés à la section de mesures se reportent sur le mesurage des polluants particulaires.

Paramètres	Norme	Réalisé sous accréditation Cofrac	Ecart à la norme
02	NF EN 14789	Oui	Aucun écart à la norme
CO2	NFX 20-301	Oui	Aucun écart à la norme
CO	NF EN 15058	Oui	Aucun écart à la norme
NOx	NF EN 14792	Oui	Aucun écart à la norme
COVt	NF EN 12619 NF EN 13526	Oui	Aucun écart à la norme
Conformité de la section de mesure et vitesse	NF EN ISO 16911-1 / NF EN 13284-1 / NF EN 15259	Oui	Aucun écart à la norme
Poussières	NF EN 13284-1 / NF X44-052	Oui	Rapport d'isocinétisme non conforme - Essai 3
Métaux lourds et mercure	NF EN 14385 / NF EN 13211 / GA X 43-551	Oui (éléments présentés avec *)	Rendement d'absorption Cu, Mn, Zn Rapport d'iscocinétisme non conforme - essai 3
HCI	NF EN 1911 / GA X 43-551	Oui	Aucun écart à la norme
SO2	NF X 14791 / GA X 43-551	Oui	Aucun écart à la norme
Formaldehyde	Méthode interne	Non	Aucun écart à la norme
HF	NF X 43-304 / GA X 43-551	Oui	Aucun écart à la norme
Phenol	XP T 90-109	Non	Aucun écart à la norme
Benzene	Méthode interne	Non	Aucun écart à la norme
phenol	Méthode interne	Non	Aucun écart à la norme
PCDD-F	EN 1948-1,2,3 / GA X 43-551	Oui	Aucun écart à la norme

Poussières & Métaux : Rapport d'isocinétisme essai 3 non conforme (94% pour 95% minimum). Cela peut induire une légère sous estimation des concentrations. Au vu des faibles concentrations mesurées (inférieures à 20% de la VLE), cela n'a pas d'impact sur le résultat de conformité.

Métaux : Rendement d'absorption non conforme pour Cu, Mn et Zn. Cela peut induire une légère sous estimation des concentrations. Au vu des faibles concentrations mesurée (inférieures à 10% de la VLE), cela n'a pas d'impact sur le résultat de conformité.

Le taux d'Humidité est < à 4%, il est en dehors du domaine de validation de la Norme NF EN 14790

Mesures NOx – NF EN 14792 : l'analyseur mis en oeuvre (Réf analyseur IMC303) présente un rendement de Conversion en NO2 inférieur au critère de 95 % selon la norme NF EN 14792 mais qui reste supérieur à 80%. Pour un ratio NO2/NOx supérieur à 10%, peut aboutir à une sous-estimation des résultats.

RC 37648 Page 5/36

Sur la demande du client (vis-à-vis de soucis de production), l'ensemble des paramètres ont été mesuré en simultané. Les mesures ont été réalisé en 1 point fixe. Cela induit une augmentation des incertitudes de mesure Les gaz étant défini comme homogène dans le conduit, l'impact est négligeable sur les résultats de conformité.

3.2 CONFORMITE DES BLANCS DE SITE

Tableau 2. Conformité des blancs

Paramètre	Unité	VLE	Blanc	Validation blanc	LQ	Validation LQ
Poussières	mg/m_0^3	5	0,3	Oui	0,8	Non
Cd *	mg/m ₀ ³	0,01	0,0	Oui	0,0006	Oui
Pb *	mg/m ₀ ³	0,15	0,001	Oui	0,001	Oui
Cu *	mg/m ₀ ³	0,1	0,00005	Oui	0,003	Oui
Somme : Cd * + Pb * + Cr * + Cu * + Mn * + Ni * + V * + Zn	mg/m ₀ ³	1	0,04	Oui	0,02	Oui
HCI	mg/m ₀ ³	5	0,1	Oui	0,1	Oui
SO2	mg/m ₀ ³	100	0,1	Oui	0,1	Oui
HF	mg/m ₀ ³	1	0,07	Oui	0,3	Non
Somme : Dioxines + Furannes	ng/m ₀ ³	0,1	0,003	Oui	0,001	Oui

Poussières et HF : LQ non validées. Au vu de l'écart entre le résultat et la VLE, aucun impact sur le jugement de conformité.

RC 37648 Page 6/36

3.3 RESULTATS

Les résultats des mesures de contrôle réalisées sur l'ensemble des installations sont présentés dans le *Tableau 3*.

Tableau 3. Synthèse des résultats obtenus

Client	AFFIMET REGEAL
Installation	RTF3
Date	11/12/2020

	Mesure
Horaire	09:50 - 10:05
Température (°C)	100
Vitesse (m/s)	16,6
Débit (m ₀ ³ /h)	59100

	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Horaire Gaz	13:02 - 14:02	14:28 - 15:13	15:36 - 16:10				
O2 teneur	20,4	21,1	21,1	20,9	%	-	-
CO2 teneur	0,3	0	0	0,1	%	-	-
CO teneur	8,9	3,5	6,5	6,3	mg/m3	-	-
CO flux				0,372	kg/h	-	-
NOx teneur	4,6	1,2	3,2	3	mg/m3(NO2)	200	Conforme
NOx flux				0,177	kg/h	16	Conforme
COVt teneur	13,2	0,6	0,4	4,7	mg eqC/m3	30	Conforme
COVt flux				0,278	kg/h	2,4	Conforme

	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Date et Heure	11/12/2020	11/12/2020	11/12/2020				
Date et neule	13:02 - 14:02	14:28 - 15:13	15:36 - 16:10				
Poussières teneur	1,9	1,0	0,9	1,3	mg/m ₀ ³	5	Conforme
Poussières flux	0,11	0,06	0,06	0,08	kg/h	0,4	Conforme

	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Date et Heure	11/12/2020	11/12/2020	11/12/2020				
Date et l'ieule	13:02 - 14:02	14:28 - 15:13	15:36 - 16:10				
Cd * teneur	0,00011	0,00004	0,00001	0,00005	mg/m_0^3	0,01	Conforme
Cd * flux	0,000006	0,000002	0,000001	0,000003	kg/h	0,0008	Conforme
Pb * teneur	0,004	0,002	0,002	0,003	mg/m_0^3	0,15	Conforme
Pb * flux	0,0002	0,0001	0,0001	0,0002	kg/h	0,012	Conforme
Cr * teneur	0,0007	0,0004	0,0005	0,0005	mg/m_0^3	-	
Cr * flux	0,00004	0,00003	0,00003	0,00003	kg/h	0,0016	Conforme
Cu * teneur	0,007	0,003	0,001	0,004	mg/m_0^3	0,1	Conforme
Cu * flux	0,0004	0,0002	0,00003	0,0002	kg/h	0,008	Conforme
Somme : Cd * + Pb * +							
Cr * + Cu * + Mn * + Ni	0,1	0,1	0,1	0,1	mg/m_0^3	1	Conforme
* + V * + Zn teneur							
Somme : Cd * + Pb * +							
Cr * + Cu * + Mn * + Ni	0,006	0,004	0,004	0,005	kg/h	0,08	Conforme
* + V * + Zn flux							

RC 37648 Page 7/36

	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Data at Hausa	11/12/2020	11/12/2020	11/12/2020				
Date et Heure	13:02 - 14:02	14:28 - 15:13	15:36 - 16:10				
HCI teneur	1,4	0,06	0,5	0,6	mg/m_0^{3}	5	Conforme
HCl flux	0,08	0,003	0,03	0,04	kg/h	0,4	Conforme
-		,	<u> </u>		1		
	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Date et Heure	11/12/2020	11/12/2020	11/12/2020				
Date of Floare	13:02 - 14:02	14:28 - 15:13	15:36 - 16:10				
SO2 teneur	0,2	0,1	0,1	0,1	mg/m ₀ ³	100	Conforme
SO2 flux	0,01	0,003	0,005	0,007	kg/h	8	Conforme
Г		T		1	11.11.1		10 4 1/11/11
	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Date et Heure	11/12/2020	11/12/2020	11/12/2020				
	13:02 - 14:02	14:28 - 15:13	15:36 - 16:10		. 2		
HF teneur	0,05	0,003	0,003	0,02	mg/m_0^3	1	Conforme
HF flux	0,003	0,0001	0,0002	0,001	kg/h	0,08	Conforme
Г	F :4	T = :0	F :0		11.57	\ // F	0 ('()) // 5
	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Date et Heure	11/12/2020	11/12/2020	11/12/2020				
_	13:02 - 14:02	14:28 - 15:13	15:36 - 16:10		. 2		
Benzene teneur	0,009	0	0,01	0,007	mg/m ₀ ³	20	Conforme
Benzene flux	0,0005	0	0,0008	0,0004	kg/h	1,6	Conforme
Г	F14	11-30	\// F	0111 > 1->// 5			
	Essai 1	Unité	VLE	Conformité à la VLE			
Date et Heure	11/12/2020						
Somme : Dioxines +	10:35 - 16:10						
Furannes teneur	0,02	ng/m ₀ ³	0,1	Conforme			
Somme : Dioxines + Furannes flux	0,0014	mg/h	0,0016	Conforme			
Г			F :-	T 1,	11.57	\"=	0 (%/) : : : : :
	Essai 1	Essai 2	Essai 3	Moyenne	Unité	VLE	Conformité à la VLE
Date et Heure	04/11/2020	04/11/2020	04/11/2020				
COV annova III	14:41 - 15:41	15:45 - 16:45	16:50 - 17:30				
COV annexe III Formaldehyde +							
Acetaldehyde +	0,5	0,3	0,4	0,4	mg/m ₀ ³	20	Conforme
Acroleine + Phenol	0,5	0,3	0,4	0,4	mg/m ₀	20	Conionne
teneur COV annexe III							
Formaldehyde +							
*	0,03	0,02	0,02	0,02	kg/h	1,1	Conforme
Acetaldehyde + Acroleine + Phenol flux							
Actoreine + Phenol tiux							

RC 37648 Page 8/36

4 DESCRIPTION DE L'INSTALLATION

Tableau 4. Description de l'installation

Installation	Nom usuel	RTF3
IIIStallation	Secteur	Métallurgie
	Type	Four
Outil de production	Description	Capacité : 15T
Outil de production	Description	Puissance : 5MW
	Type d'émission	cyclique
Ventilateur d'extraction	Débit nominal	80 000 Nm3/h
	Type	Filtre à manches
Traitement de fumées	Constructeur	-
Haitement de lumees	Paramètres de	Voir ci-dessous
	fonctionnement	voii ci-dessous
Section de mesurage	Positionnement	Cheminée

RC 37648 Page 9/36

5 HOMOGENEITE DE LA SECTION DE MESURE (COMPOSES GAZEUX)

Concernant les polluants émis sous forme gazeuse, la section de mesure possède les caractéristiques suivantes au sens de la norme NF EN 15259 et du guide d'application GA X43-551.

Tableau 5. Etude de l'homogénéité

			L'émissaire objet de ce rapport se situe dans le cas suivant
Α	Les effluents sont issus d'un seul émetteur et il n'y a pas d'entrée d'air, ou Les effluents sont issus de plusieurs émetteurs et la section de mesurage est située en aval d'un système d'homogénéisation tel qu'un ventilateur d'extraction et il n'y a pas d'entrée d'air en aval.	La section de mesurage est réputée homogène	X
В	La caractérisation de l'écoulement au niveau de la section de mesure a été réalisée par le laboratoire ayant procédé au contrôle précédent.	La section de mesurage a été déclarée homogène	
С	Le diamètre du conduit est < 0.35 m	L'homogénéité n'a pas à être vérifiée	
D	L'installation ne comporte qu'un axe de prélèvement Et/ou La plate forme de prélèvement ne permet pas l'exploration de l'ensemble de la section L'installation ne comporte qu'un axe de prélèvement Et/ou La plate forme de prélèvement ne permet pas l'exploration de l'ensemble de la section	La vérification de l'homogénéité ne peut être réalisée	X
E	L'installation ne répond pas aux conditions précisées en A, B, C ou D ou nous ne disposons pas de résultats antérieurs. La mesure de l'homogénéité a été faite dans le cadre de cette campagne de mesure	Voir les résultats du mesurage dans le corps du rapport	

RC 37648 Page 10/36

6 CARACTÉRISTIQUES AÉRAULIQUES

6.1 PRINCIPE DE MESURE

Les débits gazeux circulant dans les gaines sont déterminés par exploration des vitesses appliquant les références normatives suivantes :

- Norme NF EN ISO 16911-1 relative à « Émissions de sources fixes Détermination manuelle et automatique de la vitesse et du débit-volume d'écoulement dans les conduits — Partie 1 : Méthode de référence manuelle ».
- Norme NF EN 14790 relative à la « Détermination de la vapeur d'eau dans les conduits »,
- Norme NF EN 13284-1 relative au « Prélèvement de poussière dans une veine gazeuse ».

Bien que cette dernière norme ne soit pas destinée à la mesure du débit de conduite, elle est utilisée pour la mesure de flux de poussière, qui lui, nécessite la connaissance du débit dans le conduit ; en outre, le réglage de l'isocinétisme nécessite de connaître les vitesses aux points de prélèvement ; la norme sert donc de référence pour définir l'emplacement des points de mesure lorsque des mesures manuelles sont effectuées.

La mesure de débit consiste à :

- Définir dans la section de mesure la position des points de mesure qui devront être choisis en nombre suffisant pour connaître la répartition des vitesses de façon satisfaisante,
- Mesurer la pression différentielle (Pi) existant entre les prises de pression totale (Pt) et statique (Ps) d'un tube Pitot placé en ces points ainsi que la masse volumique du fluide dans les conditions de mesure,
- Déterminer la vitesse locale de l'écoulement (Vi) sur la base des mesures précédentes,
- Calculer par une méthode arithmétique la vitesse moyenne débitante par l'aire de section du conduit,
- Déterminer le débit réel humide (Qv) égal au produit de la vitesse moyenne débitante par l'aire de section du conduit,
- Déterminer l'humidité des fumées pour exprimer le débit des fumées sèches,
- Déterminer la température en chaque point et la pression absolue dans la gaine pour exprimer les débits dans les conditions normales.

RC 37648 Page 11/36

6.2 CARACTÉRISTIQUES AÉRAULIQUES

Les caractéristiques aérauliques de l'installation contrôlée sont détaillées dans le Tableau 6.

Tableau 6. Carte de vitesses et caractéristiques aérauliques

	CARTE DE VITESSE	
	Essai	Essai 1
	Date	11/12/2020
	Heure	09:50 - 10:05
	Points de mesure (cm)	Vitesse en m/s
	6	16,5
_	20	16,5
Axe 1	40	16,6
A	95	16,5
	115	16,7
	129	16,7
	6	16,5
	20	16,5
e 2	40	16,6
Axe	95	16,5
	115	16,7
	129	16,7
	Données gaz	
	Pression atmo. (hPa)	988
	Teneur moyenne O ₂ (% vol.sec)	20,9
	Teneur moyenne CO ₂ (% vol.sec)	0,1
	Teneur moyenne CO (ppm)	5
	Teneur moyenne H ₂ O (% volv/vol hum)	3,1
	Masse volumique normale humide (kg/m ₀ ³)	1,274
	Masse volumique (kg/m³)	0,909
	Caractéristiques aérauliques	
	Débit réel (m ³ /h)	85500
	Débit normal (m ₀ ³ /h) sec	59100
	Débit normal (m ₀ ³ /h) hum	61000
	Vitesse moyenne (m/s)	16,6
	Surface section (m ²)	1,43
	Pression statique (hPa)	-0,21
	Pression absolue (hPa)	987,79
	Température (°C)	100
	Rapport Vmax/Vmin	1

RC 37648 Page 12/36

6.3 RESPECT DE LA MESURE PAR RAPPORT AUX NORMES NF EN ISO 16911-1, NF EN 13284-1 ET NF EN 15259

Tableau 7. Conformité de la section de prélèvement

Coroctórioticuos gánárolos	Forme de la gaine	Circulaire	
Caractéristiques générales du conduit	Dimension des gaines (m)	1,35	
aa ooriaan	Diamètre hydraulique (m)	1,35	
Emplacement de la section	Distance de longueur droite en amont en (m)	7	Suffisant
de mesure	Distance de longueur droite en aval en (m)	7	Suffisant
Plateforme d'accès et conditions d'installation du	Dimension de la passerelle (m²)	3	С
matériel	Zone de dégagement (m)	2	NC
	Nombre de brides sur le conduit	2	С
	Brides normalisées	Oui	
Points prélèvement	Type de bride	100 x 400	С
	Nombre de lignes de prélèvement pour conformité selon NFX 44-052 & NF EN 13284-1	2	С
	Rapport Vmax/Vmin <3	1,0	С
	Angle d'écoulement des gaz inférieur à 15°	0°	C
	Essai répétabilité sur site (< 5% de la vitesse)	0,0%	С
Vitesses	Ecart température inférieur à 5% de la température moyenne		С
	P. différentielle minimale sur la section de mesurage >0,5 mm CE		С

RC 37648 Page 13/36

7 POUSSIÈRES DANS LES FUMÉES

7.1 PRINCIPE DE MESURE

La mesure de la concentration en poussière est réalisée par prélèvement isocinétique suivant la norme **NF EN 13284-1 ou NF X44-052**.

Ces normes précisent le matériel et la méthode générale de prélèvement isocinétique de poussière dans un conduit dont le principe consiste à :

- Déterminer dans la section de mesure, la position des points de prélèvement qui doivent être choisis en nombre suffisant pour réaliser un échantillonnage représentatif,
- Mesurer la vitesse de l'effluent gazeux en chacun de ces points,
- Calculer le débit d'aspiration en chacun des points de l'exploration afin de réaliser un prélèvement isocinétique (vitesse à l'entrée de buse de prélèvement égale à la vitesse de l'écoulement au point considéré).

Un échantillonnage représentatif des gaz chargés en poussières est réalisé par exploration de la section de mesure. La durée du prélèvement est ajustée en fonction de la concentration.

La phase particulaire est séparée de la phase gazeuse par un filtre plan à haute efficacité. Le rinçage de sonde permet de récupérer, après évaporation, les poussières sédimentées dans le système de prélèvement. Les deux pesées déterminées contribuent avec la connaissance du volume de gaz prélevé au calcul de la concentration massique en particules solides (ou indice pondéral).

Les rejets de poussières sont caractérisés par leur concentration exprimée en mg/m₀³ secs et leur flux massique exprimé en kg/h.

7.2 POUSSIÈRES DANS LES FUMÉES

Les concentrations en poussières de l'installation contrôlée sont détaillées dans le Tableau 8.

AFFIMET REGEAL - RTF3 Paramètres de prélèvements Essai nº Moyenne Ecart type Blanc initial Réf. Filtre S9105 S9106 S9107 S9104 Réf. Rincage LP S9740 S9740 S9740 S9739 Solution rincage H2O + Acétone H2O + Acétone H2O + Acétone H2O + Acétone Date 11/12/2020 11/12/2020 11/12/2020 11/12/2020 Heure de début 13:02 14:28 15:36 Heure de fin 14:02 15:13 16:10 Durée (min) 34 60 45 34 Volume prélevé (m₀³) 2.147 1,569 1.255 1.663 0.370 1,255 103,4% 100,8% 94,1% bec:8 mm bec:8 mm bec:8 mm Rapport d'isocinétisme vitesse gaine vitesse gaine vitesse gaine : 16,6 m/s С : 16,6 m/s NC : 16,6 m/s C Test étanchéité (%) 0,3% С 0,3% С 0.3% C Température de filtration (°C) С С С 180,0 180,0 180,0

Tableau 8. Concentrations en poussières

	Essai n°	1	3	5	Moyenne	Ecart type	Blanc initial
	Masse filtre (mg)	2,9	0,35	0	1,1	1,3	0
Poussières	Masse rinçage (mg)	1,2	1,2	1,2	1,1	0,2	0,4
r oussieles	Concentration normalisée (mg/m ₀ ³ sec)	1,9	1,0	0,9	1,2	0,5	0,3
	Flux (kg/h)	0,11	0,06	0,06	0,07	0,03	0,02

RC 37648 Page 14/36

8 MÉTAUX LOURDS

8.1 PRINCIPE DE MESURE

La mesure de la concentration en métaux lourds est réalisée par prélèvement isocinétique..

La phase particulaire est séparée de la phase gazeuse par un filtre plan avec :

- pour le mercure (NF EN 13211) : Un train de 2 barboteurs avec une solution à 2 % m/m de KMnO₄ et 10 % m/m d'H₂SO₄ est utilisé pour piéger la forme aérosol et gazeuse.
- Pour les autres métaux (NF EN 14385): un train de 3 barboteurs avec une solution d'absorption composée d'un mélange d'acide nitrique (HNO₃) à 3,3 % m/m et d'eau oxygénée (H₂O₂) à 1,5 % m/m est utilisé pour piéger la forme aérosol et gazeuse des métaux lourds.

Les analyses sont réalisées par le laboratoire Micropolluants Technologie accrédité COFRAC (N° d'accréditation 1-1151 – portée disponible sur www.cofrac.fr) :

- Par ICP-MS pour les métaux lourds particulaires et gazeux,
- Par AFS pour le mercure gazeux.

8.2 CONCENTRATION EN METAUX LOURDS DANS LES FUMEES

Les concentrations en métaux lourds de l'installation contrôlée sont détaillées dans le Tableau 9.

Tableau 9. Mesures de la concentration en métaux lourds

Paramètres de prélèvements	AFFIMET REGEAL - RTF3										
Type de prélèvement	Ligne principale + Ligne Secondaire										
Essai n°	1		2		3		Moyenne		Ecart type		Blanc initial
Réf. Filtre	S9105		S9106		S9107						S9104+S9739
Type filtre	Quartz		Quartz		Quartz						Quartz
Réf. Rinçage LP	S9740		S9740		S9740						
Type solution de rinçage	H2O + Acéto	one	H2O + Acéto	ne	H2O + Acéto	one					H2O + Acétone
Réf. B1+B2 (métaux)	S9742		S9744		S9745						S9741
Réf. B3 (métaux)	S9743	S9743									
Type solution d'absorption	HNO3		HNO3		HNO3						HNO3
Date	11/12/2020		11/12/2020	11/12/2020		0					11/12/2020
Heure de début	13:02		14:28		15:36						
Heure de fin	14:02		15:13		16:10						
Durée (min)	60		45		34						
Volume prélevé ligne principale (m ₀ ³)	2,147		1,569		1,255		1,657		0,452		1,255
Volume prélevé ligne secondaire ML (m ₀ ³)	0,244		0,161		0,129		0,178		0,059		0,129
Rapport d'isocinétisme	103,4% bec : 8 mm vitesse gaine : 16,6 m/s	С	100,8% bec : 8 mm vitesse gaine : 16,6 m/s	С	94,1% bec : 8 mm vitesse gaine : 16,6 m/s	NC					
Test étanchéité ligne principale (%)	0,3%	С	0,3%	С	0,3%	С					
Test étanchéité ligne secondaire (%)	0,0%	С	0,0%	С	0,0%	С					
Température de filtration (°C)	180,0	С	180,0	С	180,0	С					

RC 37648 Page 15/36

	Essai n°	1	2	3	Moyenne	Ecart type	Blanc initial
	Masse particulaire (mg)	0,000232	0,0000601	0,0000167	0,000103	0,000114	0
	Masse gazeuse (mg)	0	0	0	0	0	0
Cd *	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,000108	0,0000383	0,0000133	0,0000533	0,0000492	0
Cu	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0	0	0	0	0	0
	Concentration normalisée (mg/m ₀ ³ sec)	0,000108	0,0000383	0,0000133	0,0000533	0,0000492	0
	Flux (kg/h)	0,00000639	0,00000226	0,000000786	0,00000315	0,00000291	0
	Masse particulaire (mg)	0,00191	0,000531	0,000218	0,000887	0,000901	0,0000597
	Masse gazeuse (mg)	0,000699	0,000329	0,000223	0,000417	0,00025	0,0000682
Pb *	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,000891	0,000338	0,000174	0,000468	0,000375	0,0000476
Fυ	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0,00287	0,00204	0,00172	0,00221	0,000592	0,000528
	Concentration normalisée (mg/m ₀ ³ sec)	0,00376	0,00238	0,0019	0,00268	0,000967	0,000575
	Flux (kg/h)	0,000222	0,000141	0,000112	0,000158	0,0000571	0,000034
	Masse particulaire (mg)	0,00141	0,000675	0,000647	0,000912	0,000434	0,000369
	Masse gazeuse (mg)	0	0	0	0	0	0
Cr*	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,000658	0,00043	0,000515	0,000535	0,000115	0,000294
Cl	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0	0	0	0	0	0
	Concentration normalisée (mg/m ₀ ³ sec)	0,000658	0,00043	0,000515	0,000535	0,000115	0,000294
	Flux (kg/h)	0,0000389	0,0000254	0,0000305	0,0000316	0,0000068	0,0000174
	Masse particulaire (mg)	0,00949	0,00163	0,000679	0,00393	0,00484	0,0000625
	Masse gazeuse (mg)	0,000544	0,000368	0	0,000304	0,000278	0
Cu *	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,00442	0,00104	0,000541	0,002	0,00211	0,0000498
Ou	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0,00224	0,00228	0	0,0015	0,0013	0
	Concentration normalisée (mg/m ₀ ³ sec)	0,00666	0,00331	0,000541	0,0035	0,00306	0,0000498
	Flux (kg/h)	0,000393	0,000196	0,000032	0,000207	0,000181	0,00000294
	Masse particulaire (mg)	0,00489	0,00302	0,00117	0,00303	0,00186	0,00211
	Masse gazeuse (mg)	0,00551	0,00141	0,000676	0,00253	0,00261	0,000341
Mn *	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,00228	0,00192	0,00168	0,00196	0,000298	0,00168
IVIII	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0,0226	0,00876	0,00523	0,0122	0,0092	0,00264
	Concentration normalisée (mg/m ₀ ³ sec)	0,0249	0,0107	0,00691	0,0142	0,00949	0,00432
	Flux (kg/h)	0,00147	0,000632	0,000408	0,000838	0,000561	0,000255
	Masse particulaire (mg)	0,00139	0,000758	0,000615	0,00092	0,00041	0,000269
	Masse gazeuse (mg)	0,000222	0	0	0,0000742	0,000128	0
Ni *	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,000646	0,000483	0,00049	0,00054	0,000092	0,000214
1.0	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0,000914	0	0	0,000305	0,000527	0
	Concentration normalisée (mg/m ₀ ³ sec)	0,00156	0,000483	0,00049	0,000844	0,000619	0,000214
	Flux (kg/h)	0,0000922	0,0000285	0,000029	0,0000499	0,0000366	0,0000127
	Masse particulaire (mg)	0,000179	0,0000822	0	0,000087	0,0000895	0,000019
	Masse gazeuse (mg)	0	0	0	0	0	0
V *	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,0000833	0,0000524	0,0000151	0,0000503	0,0000341	0,0000151
v e	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0	0	0	0	0	0
	Concentration normalisée (mg/m ₀ ³ sec)	0,0000833	0,0000524	0,0000151	0,0000503	0,0000341	0,0000151
	Flux (kg/h)	0,00000492	0,0000031	0,000000895	0,00000297	0,00000202	0,000000895

RC 37648 Page 16/36

	Essai n°	1	2	3	Moyenne	Ecart type	Blanc initial
	Masse particulaire (mg)	0,0386	0,00994	0,00492	0,0178	0,0182	0,000781
	Masse gazeuse (mg)	0,0119	0,00688	0,00793	0,00892	0,00268	0,00489
Zn	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,018	0,00633	0,00392	0,00941	0,00752	0,000622
ΔП	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0,0491	0,0426	0,0613	0,051	0,00948	0,0378
	Concentration normalisée (mg/m ₀ ³ sec)	0,067	0,049	0,0652	0,0604	0,00995	0,0384
	Flux (kg/h)	0,00396	0,00289	0,00385	0,00357	0,000588	0,00227
	Masse particulaire (mg)	0,415	0,213	0,171	0,266	0,13	0,135
	Masse gazeuse (mg)	0,00929	0,00332	0,0013	0,00464	0,00416	0,00136
ΔI	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,193	0,136	0,136	0,155	0,0331	0,107
Al	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0,0382	0,0206	0,0106	0,0231	0,014	0,0106
	Concentration normalisée (mg/m ₀ ³ sec)	0,231	0,156	0,147	0,178	0,0464	0,118
	Flux (kg/h)	0,0137	0,00924	0,00866	0,0105	0,00274	0,00696
	Masse particulaire (mg)	0,0581	0,0167	0,00826	0,0277	0,0268	0,00367
Somme : Cd	Masse gazeuse (mg)	0,0189	0,00899	0,00882	0,0122	0,00594	0,0053
* + Pb * + Cr	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,0271	0,0106	0,00735	0,015	0,0106	0,00293
* + Cu * + Mn * + Ni *	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0,0777	0,0557	0,0683	0,0672	0,0211	0,041
+ V * + Zn	Concentration normalisée (mg/m ₀ ³ sec)	0,105	0,0664	0,0756	0,0822	0,0243	0,0439
	Flux (kg/h)	0,00619	0,00392	0,00447	0,00486	0,00144	0,00259

	Essai 1						
Molécule	Rendement	Conclusion					
Cd	-	Conforme : non quantifiable dans le dernier barboteur					
Pb	83,4%	Concentration hors domaine d'application					
Cr	-	Conforme : non quantifiable dans le dernier barboteur					
Cu	80,1%	Non-Conforme					
Mn	83,7%	Non-Conforme					
Ni	-	Conforme : non quantifiable dans le dernier barboteur					
V	-	Conforme : non quantifiable dans le dernier barboteur					
Zn	89,1%	Non-Conforme					

RC 37648 Page 17/36

9 DIOXYDE DE SOUFRE

9.1 PRINCIPE DE MESURE

La mesure de la concentration en dioxyde de soufre est réalisée par prélèvement ponctuel suivant la norme NF EN 14791.

La concentration en SO₂ est déterminée par barbotage d'un échantillon gazeux dans une solution d'eau oxygénée à 0,3 %. A l'issue du prélèvement, les ions sulfates résultant de la dissolution de SO₂ sont dosés par chromatographie ionique par le laboratoire Micropolluants Technologie accrédité COFRAC (N° d'accréditation 1-1151 – portée disponible sur www.cofrac.fr).

9.2 CONCENTRATION EN DIOXYDE DE SOUFRE DANS LES FUMEES

Les concentrations en dioxyde de soufre de l'installation contrôlée sont détaillées dans le *Tableau 10*.

Tableau 10. Mesures de la concentration en dioxyde de soufre

Paramètres de prélèvements		AFFIMET REGEAL - RTF3									
Essai n°	1		2		3		Moyenne	Ecart Type	Blanc initial		
Réf. Support 1	S9751		S9753		S9754				S9773		
Réf. Support 2	S9752										
Type Support	barboteur H2C 0.3 ou 3%)2	barboteur H2 0.3 ou 3%		barboteur H2 0.3 ou 3%	-			barboteur H2O2 0.3 ou 3%		
Date	11/12/2020		11/12/2020)	11/12/2020)			11/12/2020		
Heure de début	13:02		14:28		15:36						
Heure de fin	14:02		15:13		16:10						
Durée (min)	60		45		34						
Volume prélevé (m ₀ ³)	0,225		0,163		0,120		0,169	0,053	0,120		
Test étanchéité (%)	0,0%	С	0,0%	С	0,0%	\circ					
Température de filtration (°C)	180,0	С	180,0	С	180,0	С					

	Essai n°	1	2	3	Moyenne	Ecart Type	Blanc initial
	Masse support 1 (mg)	0,0418	0,0084	0,00955	0,0199	0,019	0,0079
SO2	Masse support 2 (mg)	0,00525	0	0	0,00175	0,00303	
302	Concentration normalisée (mg/m ₀ ³ sec)	0,209	0,0515	0,0798	0,113	0,0839	0,066
	Flux (kg/h)	0,0123	0,00305	0,00472	0,0067	0,00496	0,0039

		Essai 1
Molécule	Rendement	Conclusion
SO2	-	Conforme : non quantifiable dans le dernier support

RC 37648 Page 18/36

10 ACIDE CHLORHYDRIQUE

10.1 DESCRIPTION DU PRINCIPE DE MESURE

La mesure de la concentration en acide chlorhydrique est réalisée par prélèvement ponctuel suivant la norme NF EN 1911-1.

La concentration en HCl est déterminée par barbotage d'un échantillon gazeux dans une solution d'eau déminéralisée. A l'issue du prélèvement, les ions chlorures résultant de la dissolution d'HCl sont dosés par chromatographie ionique par le laboratoire Micropolluants Technologie accrédité COFRAC (N° d'accréditation 1-1151 – portée disponible sur www.cofrac.fr).

10.2 CONCENTRATION EN ACIDE CHLORHYDRIQUE

Les concentrations en acide chlorhydrique de l'installation contrôlée sont détaillées dans le Tableau 11.

Tableau 11. Mesures de la concentration en acide chlorhydrique

Paramètres de prélèvements					AFFIME	T RE	EGEAL - RTF3		
Essai n°	1		2		3	3		Ecart Type	Blanc initial
Réf. Support 1	S9747		S9749		S9750				S9746
Réf. Support 2	S9748								
Type Support	barboteur e démi	au	barboteur e démi	barboteur eau démi		barboteur eau démi			barboteur eau démi
Date	11/12/2020	0	11/12/2020)	11/12/2020				11/12/2020
Heure de début	13:02		14:28		15:36				
Heure de fin	14:02		15:13		16:10				
Durée (min)	60		45		34				
Volume prélevé (m ₀ ³)	0,264		0,188		0,140		0,197	0,062	0,140
Test étanchéité (%)	0,0%	С	0,0%	С	0,0%	С			
Température de filtration (°C)	180,0	С	180,0	С	180,0	С			

	Essai n°	1	2	3	Moyenne	Ecart Type	Blanc initial
	Masse support 1 (mg)	0,367	0,009	0,0666	0,148	0,192	0,0106
HCI	Masse support 2 (mg)	0,00485	0	0	0,00162	0,0028	
ПСІ	Concentration normalisée (mg/m ₀ ³ sec)	1,4	0,056	0,475	0,647	0,693	0,0753
	Flux (kg/h)	0,0833	0,00331	0,0281	0,0382	0,041	0,00445

Essai 1								
Molécule	Rendement	Conclusion						
HCI	-	Conforme : non quantifiable dans le dernier support						

RC 37648 Page 19/36

11 ACIDE FLUORHYDRIQUE

11.1 PRINCIPE DE MESURE

La mesure de la concentration en acide fluorhydrique est réalisée par prélèvement iso-cinétique suivant la norme NF X43-304.

La phase particulaire est séparée de la phase gazeuse par un filtre plan. La phase gazeuse est piégée par barbotage d'un échantillon gazeux dans une solution de NaOH 0,1N.

A l'issue du prélèvement, les ions fluorures résultant de la dissolution du HF sont dosés par chromatographie ionique par le laboratoire Micropolluants Technologie accrédité COFRAC (N° d'accréditation 1-1151 – portée disponible sur www.cofrac.fr).

11.2 CONCENTRATION EN ACIDE FLUORHYDRIQUE DANS LES FUMEES

Les concentrations en acide fluorhydrique de l'installation contrôlée sont détaillées dans le Tableau 12.

RC 37648 Page 20/36

Tableau 12. Mesures de la concentration en acide fluorhydrique

Paramètres de prélèvements					AFFIME	T RE	GEAL - RTF3			
Type de prélèvement					Ligne principa	ale +	- Ligne Seconda	aire		
Essai n°	1		2		3	3			Ecart type	Blanc initial
Réf. Filtre	S9086		S9087	S9087						S9085+S9769
Type filtre	Quartz		Quartz		Quartz					Quartz
Réf. Rinçage LP	S9770		S9770		S9770					
Type solution de rinçage	H2O + NaC N/10	Н	H2O + NaC N/10			Н				H2O + Acétone
Réf. B1	S9759		S9761		S9762					S9758
Type solution d'absorption	barboteur Na N/10	ОН	barboteur Na N/10			barboteur NaOH N/10				NaOH N/10
Date	11/12/202)	11/12/202	0	11/12/2020					11/12/2020
Heure de début	13:02		14:28		15:36					
Heure de fin	14:02		15:13		16:10					
Durée (min)	60		45		34					
Volume prélevé ligne principale (m ₀ ³)	2,074		1,588		1,347		1,670		0,370	0,054
Volume prélevé ligne secondaire HF (m ₀ ³)	0,128		0,054		0,041		0,074		0,047	0,128
Rapport d'isocinétisme	99,9% bec : 8 mm vitesse gaine : 16,6 m/s	С	102% bec : 8 mm vitesse gaine : 16,6 m/s	С	101% bec : 8 mm vitesse gaine : 16,6 m/s	С				
Test étanchéité ligne principale (%)	0,3%	С	0,3%	С	0,3%	С				
Test étanchéité ligne secondaire (%)	0,0%	С	0,0%	С	0,0%	С				
Température de filtration (°C)	180,0	С	180,0	С	180,0	С				

	Essai n°	1	2	3	Moyenne	Ecart type	Blanc initial
	Masse particulaire (mg)	0,101	0	0	0,0335	0,0581	0,004
	Masse gazeuse (mg)	0	0	0	0	0	0
HF	Concentration normalisée phase particulaire (mg/m ₀ ³ sec)	0,0485	0,00252	0,00297	0,018	0,0264	0,0735
ПГ	Concentration normalisée phase gazeuse (mg/m ₀ ³ sec)	0	0	0	0	0	0
	Concentration normalisée (mg/m ₀ ³ sec)	0,0485	0,00252	0,00297	0,018	0,0264	0,0735
	Flux (kg/h)	0,00287	0,000149	0,000175	0,00106	0,00156	0,00435

RC 37648 Page 21/36

12 ALDEHYDES

12.1 PRINCIPE DE MESURE

La concentration en aldéhydes est déterminée par prélèvement dans une solution de DNPH.

12.2 CONCENTRATION EN ALDEHYDES DANS LES FUMEES

Les concentrations en aldéhydes de l'installation contrôlée sont détaillées dans le *Tableau 13*.

Tableau 13. Mesures en aldéhydes

Paramètres de prélèvements		AFFIMET REGEAL - RTF3							
Essai n°	1	1 2			3	3			Ecart Type
Réf. Support 1	S9755	S9755		S9756		S9757			
Type Support	barboteur DI	NPH	barboteur DN	NPH	barboteur DN	NPH			barboteur DNPH
Date	11/12/202	20	11/12/202	0	11/12/202	20			11/12/2020
Heure de début	13:02		14:28		15:36				13:02
Heure de fin	14:02		15:13		16:10				14:02
Durée (min)	60		45		34				60
Volume prélevé (m ₀ ³)	0,200		0,171		0,125		0,165		0,038
Test étanchéité (%)	0,0%	С	0,0%	С	0,0%	С			
Température de filtration (°C)	180,0	С	180,0	С	180,0	С			

	Essai n°	1	2	3	Moyenne	Ecart Type
	Masse support 1 (mg)	0,05	0	0	0,0167	0,0289
A a atal da buda	Masse support ₂ (mg)	0	0	0	0	0
Acetaldehyde	Concentration normalisée (mg/m ₀ ³ sec)	0,25	0	0	0,0833	0,144
	Flux (kg/h)	0,0148	0	0	0,00492	0,00852
	Masse support 1 (mg)	0	0	0	0	0
Agralaina	Masse support ₂ (mg)	0	0	0	0	0
Acroleine	Concentration normalisée (mg/m ₀ ³ sec)	0	0	0	0	0
	Flux (kg/h)	0	0	0	0	0
	Masse support 1 (mg)	0,05	0,05	0,05	0,05	0
Form oldoby do	Masse support ₂ (mg)	0	0	0	0	0
Formaldehyde	Concentration normalisée (mg/m ₀ ³ sec)	0,25	0,293	0,399	0,314	0,0768
	Flux (kg/h)	0,0148	0,0173	0,0236	0,0186	0,00454
Somme :	Masse support 1 (mg)	0,1	0,05	0,05	0,0667	0,0289
Acetaldehyde	Masse support ₂ (mg)	0	0	0	0	0
+ Acroleine +	Concentration normalisée (mg/m ₀ ³ sec)	0,5	0,293	0,399	0,397	0,221
Formaldehyde	Flux (kg/h)	0,0295	0,0173	0,0236	0,0235	0,0131

RC 37648 Page 22/36

13 PHENOL

13.1 PRINCIPE DE MESURE

La concentration en phénol est déterminée par un piégeage des gaz secs dans un tube XAD7.

13.2 CONCENTRATION EN PHENOL DANS LES FUMEES

Les concentrations en phénol sont détaillées dans le Tableau 16.

Tableau 14. Mesures en phénol

Paramètres de prélèvements			I	4FF	IMET REGEA	L - F	RTF3		
Essai n°	1	1 2		3		Moyenne	Ecart Type	Э	
Réf. Support 1	S9763		S9764		S9765				
Type Support	tube XAD	7	tube XAD	7	tube XAD 7				
Date	11/12/202	0	11/12/2020		11/12/2020				
Heure de début	13:02		14:28		15:36				
Heure de fin	14:02		15:13		16:10				
Durée (min)	60		45		34				
Volume prélevé (m ₀ ³)	0,060		0,049		0,039		0,044	0,010	
Test étanchéité (%)	0,0%	С	0,0%	С	0,0%	С			

	Essai n°	1	1	2	Moyenne	Ecart Type
	Masse support 1 (mg)	0	0	0	0	0
Phenol	Masse support ₂ (mg)	0	0	0	0	0
FILETIO	Concentration normalisée (mg/m ₀ ³ sec)	0	0	0	0	0
	Flux (kg/h)	0	0	0	0	0

RC 37648 Page 23/36

14 BENZÈNE

14.1 PRINCIPE DE MESURE

La mesure de la concentration en benzène est réalisée par prélèvement suivant la norme NF EN 13649. Cette norme décrit le matériel et la méthode générale de prélèvement en benzène dans un conduit. La concentration en benzène est déterminée par un piégeage des gaz secs dans un tube de charbon actif.

14.2 CONCENTRATION EN BENZENE DANS LES FUMEES

Les concentrations en benzène sont détaillées dans le Tableau 15.

Tableau 15. Mesures en benzène

Paramètres de prélèvements	AFFIMET REGEAL - RTF3									
Essai n°	1	1 2		3		Moyenne		Ecart Type		
Réf. Support 1	S9766	766 S9767		S9768						
Type Support	charbon ac	tif	charbon ac	tif	charbon ac	tif			charbon act	if
Date	11/12/2020	020 11/12/2020		11/12/2020				11/12/2020)	
Heure de début	13:02		14:28		15:36				13:02	
Heure de fin	14:02		15:13		16:10				14:02	
Durée (min)	60		45		34				60	
Volume prélevé (m ₀ ³)	0,056		0,049		0,039		0,048		0,009	
Test étanchéité (%)	0,0%	С	0,0%	С	0,0%	С				

	Essai n°	1	2	3	Moyenne	Ecart Type
	Masse support 1 (mg)	0,0005	0	0,0005	0,000333	0,000289
Ponzono	Masse support ₂ (mg)	0	0	0	0	0
Benzene	Concentration normalisée (mg/m ₀ ³ sec)	0,00887	0	0,0127	0,0072	0,00652
	Flux (kg/h)	0,000524	0	0,000752	0,000425	0,000386

RC 37648 Page 24/36

15 PCDD/PCDF

15.1 PRINCIPE DE MESURE

La mesure de la concentration en dioxines/furannes est réalisée par prélèvement iso-cinétique suivant la norme NF EN 1948-1.

La méthode de mesure est la suivante :

- la fraction particulaire est récupérée sur filtre plan,
- la fraction gazeuse, après condensation, est récupérée sur cartouche XAD2.

L'analyse du filtre, du condensat et de la cartouche XAD2 est réalisée selon les normes NF EN 1948-2 et NF EN 1948-3 par le laboratoire Micropolluants Technologies accrédité COFRAC (N° d'accréditation 1-1151 – portée disponible sur www.cofrac.fr) pour l'analyse des dioxines/furannes.

15.2 CONCENTRATION EN PCDD/F

Les concentrations en PCDD/F de l'installation contrôlée sont détaillées dans le *Tableau 16*. Elles sont exprimées en I-TEQ.

Tableau 16. Mesures de PCDD/F

Paramètres de prélèvements	AFFIMET	RE	GEAL - RTF3		
Type de prélèvement	Ligne principale				
Essai n°	1		Blanc initial		
Réf. Filtre, résine, condensat et rinçage	S9776+S97	74	9778		
Type filtre	Quartz		Quartz		
Type résine	XAD2 80 g	j	XAD2 80 g		
Type solution de rinçage	Toluène		Toluène		
Date	11/12/2020)	11/12/2020		
Heure de début	10:35				
Heure de fin	16:10				
Durée (min)	320				
Volume prélevé (m ₀ ³)	6,620		6,620		
Rapport d'isocinétisme	106,3% bec : 6 mm vitesse gaine : 16,6 m/s	С			
Test étanchéité (%)	0,0%	O			
Température de filtration (°C)	120,0				
Température dans la résine (°C)	5,0	С			
Vitesse dans la résine (m/s)	27,5 C				
Temps de séjour dans la résine (s)	0,5	С			

RC 37648 Page 25/36

	Essai n°	1	Blanc initial
	Masse supports (ng)	0	0
2,3,7,8 TCDD	Concentration normalisée (ng/m ₀ ³ sec)	0	0
	Flux (mg/h)	0	0
	Masse supports (ng)	0,0161	0
1,2,3,7,8 PeCDD	Concentration normalisée (ng/m ₀ ³ sec)	0,00122	0
	Flux (mg/h)	0,0000719	0
	Masse supports (ng)	0,0212	0,00665
1,2,3,4,7,8 HxCDD	Concentration normalisée (ng/m ₀ ³ sec)	0,000321	0,0001
	Flux (mg/h)	0,0000189	0,00000593
	Masse supports (ng)	0,039	0,0141
1,2,3,6,7,8 HxCDD	Concentration normalisée (ng/m ₀ ³ sec)	0,00059	0,000212
	Flux (mg/h)	0,0000348	0,0000125
	Masse supports (ng)	0,0326	0,0284
1,2,3,7,8,9 HxCDD	Concentration normalisée (ng/m ₀ ³ sec)	0,000492	0,000428
	Flux (mg/h)	0,0000291	0,0000253
	Masse supports (ng)	0,753	0,453
1,2,3,4,6,7,8 HpCDD	Concentration normalisée (ng/m ₀ ³ sec)	0,00114	0,000684
	Flux (mg/h)	0,0000672	0,0000404
	Masse supports (ng)	4,5	3
OCDD	Concentration normalisée (ng/m ₀ ³ sec)	0,000685	0,000456
	Flux (mg/h)	0,0000405	0,000027
	Masse supports (ng)	0,122	0,00148
2,3,7,8 TCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,00185	0,0000224
	Flux (mg/h)	0,000109	0,00000132
	Masse supports (ng)	0,0437	0,00318
1,2,3,7,8 PeCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,00033	0,000024
	Flux (mg/h)	0,0000195	0,00000142
	Masse supports (ng)	0,138	0,00326
2,3,4,7,8 PeCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,0104	0,000246
	Flux (mg/h)	0,000616	0,0000145
	Masse supports (ng)	0,0725	0,00635
1,2,3,4,7,8 HxCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,0011	0,0000959
	Flux (mg/h)	0,0000648	0,00000567
	Masse supports (ng)	0,0957	0,00846
1,2,3,6,7,8 HxCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,00145	0,000128
	Flux (mg/h)	0,0000855	0,00000755
	Masse supports (ng)	0,183	0,0145
2,3,4,6,7,8 HxCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,00277	0,000219
	Flux (mg/h)	0,000163	0,0000129
	Masse supports (ng)	0,058	0,0015
1,2,3,7,8,9 HxCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,000877	0,0000226
	Flux (mg/h)	0,0000518	0,00000134
	Masse supports (ng)	0,347	0,101
1,2,3,4,6,7,8 HpCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,000524	0,000152
	Flux (mg/h)	0,000031	0,00000898

RC 37648 Page 26/36

	Essai n°	1	Blanc initial
	Masse supports (ng)	0,0631	0,0112
1,2,3,4,7,8,9 HpCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,0000953	0,000017
	Flux (mg/h)	0,00000563	0,000001
	Masse supports (ng)	0,323	0,134
OCDF	Concentration normalisée (ng/m ₀ ³ sec)	0,0000488	0,0000202
	Flux (mg/h)	0,00000289	0,00000119
	Masse supports (ng)	5,4	3,5
Dioxines	Concentration normalisée (ng/m ₀ ³ sec)	0,00444	0,00188
	Flux (mg/h)	0,000262	0,000111
	Masse supports (ng)	1,4	0,284
Furannes	Concentration normalisée (ng/m ₀ ³ sec)	0,0195	0,000946
	Flux (mg/h)	0,00115	0,0000559
	Masse supports (ng)	6,8	3,8
Somme : Dioxines + Furannes	Concentration normalisée (ng/m ₀ ³ sec)	0,0239	0,00283
	Flux (mg/h)	0,00141	0,000167

Marqueur	% de récupération	Conformité
1,2,3,7,8 PeCDF	109%	С
1,2,3,7,8,9 HxCDF	57%	С
1,2,3,4,7,8,9 HpCDF	72%	С

RC 37648 Page 27/36

16 GAZ DANS LES FUMÉES

16.1 PRINCIPE DE MESURE

16.1.1 O₂, CO₂, CO, NO_X

Les concentrations en O₂, CO₂, CO, NO_X sont directement mesurées sur le site à l'aide d'analyseurs automatiques après élimination de la vapeur d'eau contenue dans l'effluent gazeux par un système soit à effet Peltier soit à perméation.

La prise d'échantillon est réalisée selon la méthode extractive consistant à :

- Prélever une fraction représentative de l'effluent gazeux au moyen d'une sonde de prélèvement portable chauffée en acier inoxydable, munie d'un filtre dépoussiéreur et raccordée à une ligne de prélèvement chauffée pour le transport du gaz vers le système de conditionnement de l'échantillon.
- Éliminer la vapeur d'eau au moyen de deux systèmes :

Description des systèmes possibles	Identification du système utilisé
Système muni de membrane de perméation permettant de séparer les molécules d'eau par un balayage à contre-courant d'air sec entraînant ainsi l'humidité pour obtenir un gaz sec.	
Système muni d'un serpentin et d'un condenseur en verre refroidi par effet Peltier permettant de séparer les molécules d'eau. Une pompe péristaltique permet l'évacuation des gouttelettes d'eau pour obtenir un gaz sec.	X

- Transférer des gaz secs vers les analyseurs au moyen d'un système portable de conditionnement de l'échantillonnage de gaz muni d'un système de condensation de sécurité, d'une pompe péristaltique et d'une ligne en PTFE.
- Alimenter à pression atmosphérique chaque analyseur au moyen d'un système de répartition.

Les normes utilisées sont les suivantes :

- Oxygène (O₂): NF EN 14789,
- Monoxyde de carbone (CO): NF EN 15058,
- Dioxyde de carbone (CO₂): NF X20-301,
- monoxyde d'azote (NO) : **NF EN 14792**. Le rendement de conversion NO/NO₂ de nos analyseurs est inférieur à 95% mais supérieur à 80% conformément au LAB REF 22.

16.1.2 Mesure des COV, des COVNM et du CH₄

Les concentrations en COV sont directement mesurées à l'aide d'un analyseur automatique par ionisation de flamme après filtration par sonde chauffée et transfert par cordon chauffant (température de 180°C).

Les normes utilisées sont les suivantes :

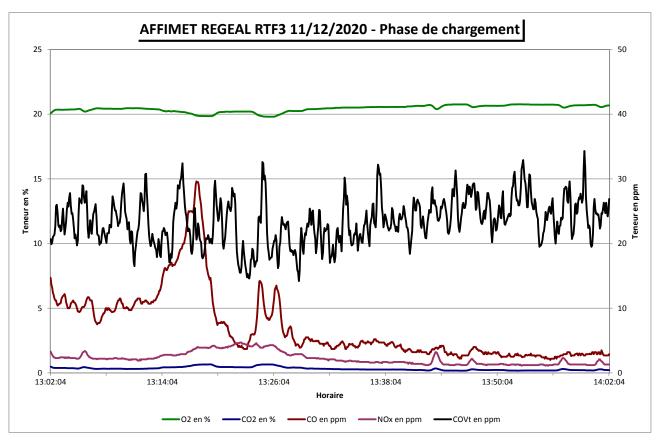
• COV totaux : NF EN 12619,

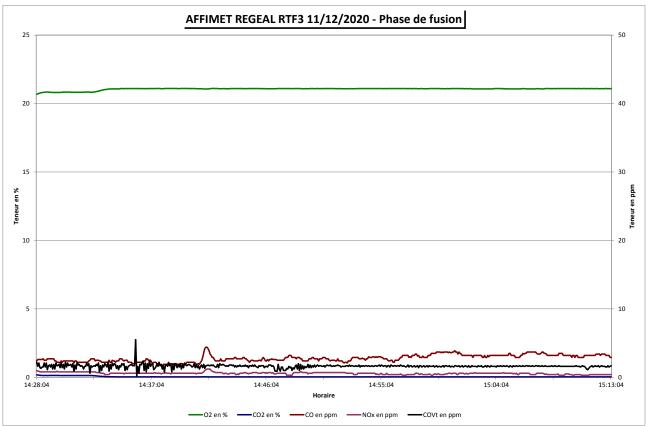
COV non méthanique et CH4 : XP-X-43554

RC 37648 Page 28/36

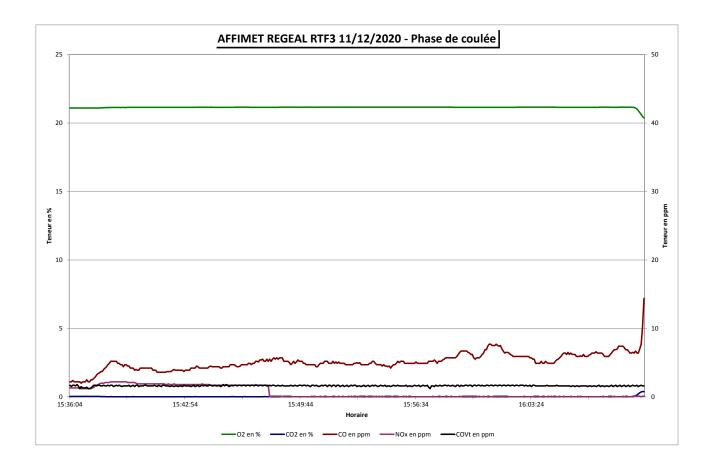
16.2 CONCENTRATION EN GAZ DANS LES FUMEES

Les concentrations en polluants gazeux de l'installation contrôlée sont détaillées dans le *Tableau 17*.


Tableau 17. Résultats des prélèvements des polluants gazeux


RTF3 du		SYNTH	HESE DES RESU	LTATS		
Para	O ₂	CO ₂	СО	NOx	COVt	
U	nité	%	%	mg/m³	mg/m3(NO2)	mg eqC/m ³
		Essai	1			
Heure de début	13:02					_
Heure de fin	14:02					
Valeur	moyenne	20,4	0,3	8,8	4,6	13,0
Valeur moy	enne corrigée	20,4	0,3	8,9	4,6	13,2
		Essai	2			
Heure de début	14:28					
Heure de fin	15:13					
Valeur	moyenne	21,1	0,0	3,5	1,2	0,6
Valeur moy	enne corrigée	21,1	0,0	3,5	1,2	0,6
		Essai	3			
Heure de début	15:36]				
Heure de fin	16:10					
Valeur moyenne		21,1	0,0	6,4	3,2	0,4
Valeur moyenne corrigée		21,1	0,0	6,5	3,2	0,4
Moyenne						
Valeur	moyenne	20,9	0,1	6,3	3,0	4,7
Flux	en kg/h			0,372	0,177	0,278

RTF3	Calibration et tests					
11/12/2020	Substances	O ₂	CO ₂	СО	NO	COVt
13:02 - 16:10	unité	%	%	ppm	ppm	ppm
	Réf. Analyseur	IMC242	IMC242	IMC242	IMC242	IMC243
	Valeur PE	25	20	500	100	100
Matériel	Bouteille zéro	322	322	322	322	AIR
	Bouteille étal.	AIR	320	320	320	312
	Teneur B. étal	20,9	9,98	399	180,2	61,32
	Heure zéro	08:00	08:00	08:00	08:00	09:00
	Valeur zéro	-0,02	-0,1	0	0,1	0
Ajustage analyseur	Heure étal.	08:08	08:04	8:04	8:04	9:04
avant mesure	Valeur étal	20,89	9,96	399,20	180,30	61,30
	Heure zéro	8:11	8:11	8:11	8:11	9:08
	Valeur zéro	0,01	-0,01	0	0,6	0
	Heure zéro	08:18	08:18	08:18	08:18	09:10
	Valeur zéro	-0,01	-0,01	0	0,6	0
Vérification ligne	Heure étal.	08:25	08:22	08:22	8:22	09:12
avant mesure	Valeur étal	20,95	9,96	397,90	183,20	61,30
	Temps de réponse (s)	60	60	60	60	0
	Taux de fuite	0,3%	0,0%	-0,3%	1,6%	0,0%
	Heure zéro	17:13	17:13	17:13	17:13	17:17
	Valeur zéro	0,08	-0,03	0,04	0,02	0
Anrès mosuro	Heure étal.	17:24	17:21	17:21	17:21	17:29
Après mesure	Valeur étal	21,14	9,93	387	183,7	59,4
	Dérive Zéro	0,4%	0,2%	0,0%	0,3%	0,0%
	Dérive PE	0,5%	0,1%	2,7%	0,6%	3,1%


RC 37648 Page 29/36

Courbe gaz 1. Prélèvements des polluants

RC 37648 Page 30/36

RC 37648 Page 31/36

17 MATÉRIEL MIS EN OEUVRE

Tableau 18. Liste du matériel utilisé

Paramètres	Norme	Méthode et appareillage	Identifiant
Vitesse		Tube de Pitot de type L	IMP313
viiesse		Micromanomètre	IMP218
Température	EN 16911	Thermocouple de type K et thermomètre	IMT318
•	_	numérique	
Pression atmosphérique		Baromètre numérique	IMP310
		Prélèvement isocinétique avec sonde titane	IMD442 + IMD425 + IMD462 + IMD439
	NF EN 13284-1 / NF X44-	et porte filtre hors conduit associé à un	+ IMD403
Poussières	052 / GA X 43-551	compteur volumétrique sur gaz sec	
		Détermination de la masse de poussière	IMD442 + IMD425 + IMD462 + IMD439
		par pesée sur une balance de précision	+ IMD403
	NF EN 14385 / NF EN	Prélèvement isocinétique avec sonde titane	IMD442 + IMD425 + IMD462 + IMD439
Métaux lourds particulaire	13211 / GA X 43-551	et porte filtre hors conduit associé à un	+ IMD403
	102117 01111 10 001	compteur volumétrique sur gaz sec	2 .00
	NF EN 14385 / GA X 43-	Prélèvement par barbotage dans HNO3	
Métaux lourd gazeux	551	associé à un compteur volumétrique sur	IMD425
	001	gaz sec	
	NF EN 1911 / GA X 43-	Prélèvement par barbotage dans H2O	
HCI	551	associé à un compteur volumétrique sur	IMD462
	351	gaz sec	
	NE EN 14701 / CA V 42	Prélèvement par barbotage dans H2O2	
SO2	NF EN 14791 / GA X 43-	associé à un compteur volumétrique sur	IMD439
	551	gaz sec	
Aldébudee	Méthodo intorno	Prélèvement sur support dédié associé à	IMD 400
Aldéhydes	Méthode interne	un compteur volumétrique sur gaz sec	IMD403
	NE V 42 204 / CA V 42	Prélèvement isocinétique avec sonde titane	
HF particulaire	NF X 43-304 / GA X 43-	et porte filtre hors conduit associé à un	IMD354 + IMD402
•	551	compteur volumétrique sur gaz sec	
	NE V 40 004 / OA V 40	Prélèvement par barbotage dans NaOH	
HF gazeux	NF X 43-304 / GA X 43-	associé à un compteur volumétrique sur	IMD402
Ü	551	gaz sec	
DI ()	M/d I i i	Prélèvement sur support dédié associé à	10004
Phénol,	Méthode interne	un compteur volumétrique sur gaz sec	AC631
_		Prélèvement sur support dédié associé à	
Benzene	Méthode interne	un compteur volumétrique sur gaz sec	AC640
		Prélèvement sur support dédié associé à	
Phenol	Méthode interne	un compteur volumétrique sur gaz sec	AC631
		Prélèvement sur filtre plan hors conduit	
		(phace particulaire) puis après	
Dioxines et Furanes	EN 1948-1,2,3 / GA X 43-	condensation sur résine XAD2 (phase	IMD602
Dioxinos ser dianes	551	gazeuse) associé à un compteur	11415002
		volumétrique sur gaz sec	
Acquisition de données	 	Acquisition de données	AC517
Concentration en O2	NF EN 14789	Paramagnétisme	IMC242
Concentration en CO2	NFX 20-301	Absorption infrarouge	IMC242
Concentration en CO	NF EN 15058	Absorption infrarouge	IMC242
Concentration en NOx	NF EN 14792	Chimiluminescence	IMC242
Concentration en SO2	NF X 20 351	Absorption infrarouge	IMC242
Concentration en COVt	NF EN 12619 NF EN 13526	Ionisation de flamme	IMC243
Concentration en COVM	XP X 43 554	lonisation de flamme	IMC243
Concentiation en COVIVI	A A 43 334	ionisation de namme	IIVIOZ43

RC 37648 Page 32/36

18 INCERTITUDES DE MESURES

Les résultats des mesures sont donnés avec une incertitude valable pour un intervalle de confiance de 95 % avec un facteur d'élargissement k = 2.

Les incertitudes de mesure sont exprimées, en fonction des concentrations obtenues, en suivant les recommandations sur la mesure des émissions de polluants atmosphériques des installations fixes. Les incertitudes de mesures pour les installations contrôlées sont présentées dans le Tableau 19.

Tableau 19. Incertitudes de mesures

Polluants	Unité	Incertitude élargie k = 2
Débit	% relatif	10,0
O2	% relatif	1,3
CO2	% absolu	0,5
CO	mg/m3	25,0
NOx	mg/m3	8,0
COVt	mg eqC/m3	4,6
PCDD/F	% relatif	25,0
HF	% relatif	10,0
SO2	% relatif	15,0
HCI	% relatif	15,0
Métaux	% relatif	35,0
Mercure	% relatif	35,0
Poussières	% relatif	43,0

Le Tableau 20 présente les limites de quantification dans les conditions d'intervention.

Tableau 20. Limite de quantification dans les conditions d'intervention

Molécule	LQ associée	Unité
Poussières	0,7	mg/m3
Cd *	0,0006	mg/m3
Pb *	0,0006	mg/m3
Cr *	0,003	mg/m3
Cu *	0,003	mg/m3
Mn *	0,003	mg/m3
Ni *	0,003	mg/m3
V *	0,003	mg/m3
Zn	0,006	mg/m3
Somme : Cd * + Pb * + Cr * + Cu * + Mn * + Ni * + V * + Zn	0,02	mg/m3
HCI	0,1	mg/m3
SO2	0,1	mg/m3
HF	0,3	mg/m3
PCDD/F	1	pg/m3

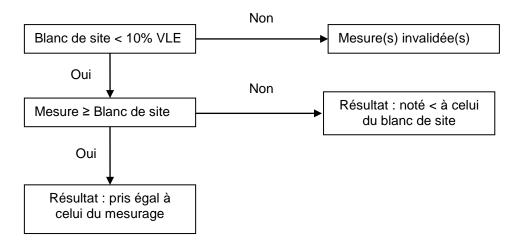
RC 37648 Page 33/36

19 PARAMETRES MESURES

Tableau 21. Paramètres mesurés en méthode manuelle et méthodologie de rinçage

	Mesures manuelles					
Essai	Paramètres mesurés	Mode opératoire de rinçage de la ligne principale	Point d'exploration			
Essai 1	Poussières / ML / HCI / SO2 / Acétaldéhyde+Acroléine+ Formaldéhyde	Eau puis acétone avec séparation en deux aliquotes, puis HNO3	Prélèvement en un point			
Essai 2	HF	Eau puis acétone avec séparation en deux aliquotes	Prélèvement en un point			
Essai 3	Phenol / Benzène	Pas de rinçage de la ligne principale	Prélèvement en un point			
Essai 4	Poussières / ML / HCI / SO2 / Acétaldéhyde+Acroléine+ Formaldéhyde	Eau puis acétone avec séparation en deux aliquotes, puis HNO3	Prélèvement en un point			
Essai 5	HF	Eau puis acétone avec séparation en deux aliquotes	Prélèvement en un point			
Essai 6	Phénol / Benzène	Pas de rinçage de la ligne principale	Prélèvement en un point			
Essai 7	Poussières / ML / HCI / SO2 / Acétaldéhyde+Acroléine+ Formaldéhyde	Eau puis acétone avec séparation en deux aliquotes, puis HNO3	Prélèvement en un point			
Essai 8	HF	Eau puis acétone avec séparation en deux aliquotes	Prélèvement en un point			
Essai 9	Phénol / Benzène	Pas de rinçage de la ligne principale	Prélèvement en un point			
Essai Résine 1	PCDD/F	Solvant miscible à l'eau puis toluène	Prélèvement en un point			

Tableau 22. Paramètres mesurés en méthode automatique


	Mesures automatiques						
Série	Paramètres mesurés	Mesures simultanées avec mesures manuelles	Point d'exploration				
Série 1	O2 / CO2 / CO / NO / SO2 / COVt / COVM / COVnM	Essai 1 : Poussières / ML / HCl / SO2 / Acétaldéhyde+Acroléine+Formald éhyde / Essai 2 : HF / Essai 3 : Phenol / Benzène / Essai 4 : Poussières / ML / HCl / SO2 / Acétaldéhyde+Acroléine+Formald éhyde / Essai 5 : HF / Essai 6 : Phénol / Benzène / Essai 7 : Poussières / ML / HCl / SO2 / Acétaldéhyde+Acroléine+Formald éhyde / Essai 8 : / HF / Essai 9 : Phénol / Benzène / Essai Résine 1 : PCDD/F	Prélèvement en un point (section homogène pour gaz)				

RC 37648 Page 34/36

ANNEXES

RC 37648 Page 35/36

Annexe 1: Règles de calcul des résultats selon LAB REF 22

Pour comparer la mesure au blanc de site, la règle de calcul énoncée ci-dessus dans le cas d'analyses inférieures à LQ/3 ou comprise entre LQ/3 et LQ doit être appliquée, que les résultats de la mesure et du blanc de site soient issus de l'analyse de plusieurs phases ou d'une seule (voir exemple dans le tableau ci-après pour une VLE de 70 mg/m₀³).

Mesure (M)	, en mg/m ₀ ³	Blanc de site (BS), en mg/m ₀ ³	Conformité	Comparaison	Résultat
phase 1	phase 2	phase 1	phase 2	BS	M/BS	resultat
< 3 (LQ)	< 1 (LQ/3)	< 1 (LQ/3)	< 1 (LQ/3)	С	1,5+0 > 0+0 M > BS	1,5
< 3 (LQ)	< 1 (LQ/3)	< 3 (LQ)	-	С	1,5+0 = 1,5 M = BS	1,5
< 3 (LQ)	< 1 (LQ/3)	3,5	< 1 (LQ/3)	С	1,5+0 < 3,5 M < BS	3,5
3,2		3,8	-	С	3,2 < 3,8 M < BS	3,8
< 3 (LQ)		< 1 (LQ/3)			1,5 > 0 M > BS	1,5
3,2	< 3 (LQ)	3,8	-	С	3,2+1,5 > 3,8 M > BS	4,7
3,2	< 1 (LQ/3)	3,4	-	С	3,2+0 < 3,4 M < BS	3,4
4	< 1,2 (LQ/3)	5,3	< 3,6 (LQ)	NC 5,3 + 1,8 > 7		NC

RC 37648 Page 36/36